ESTUDO TERMODINÂMICO DA INCLUSÃO DO DODECIL SULFATO DE SÓDIO EM BETA-CICLODEXTRINA

Larissa Helena da Rocha Meira¹ (PG)*, Frederico B. de Sousa¹ (PQ). laribiomedica@gmail.com

Palavras Chave: Lauril sulfato de sódio; composto de inclusão, β-Ciclodextrina, calorimetria de titulação isotérmica, FTIR-ATR.

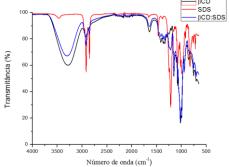
Abstract

Thermodynamic study the inclusion of sodium dodecyl sulfate in β -cyclodextrin. Thermodynamics investigation of inclusion complexes are studied to predict structure, spontaneity and the stoichiometry.

Introdução

Excipientes farmacêuticos podem interagir entre si afetando a estabilidade, biodisponibilidade, eficácia e segurança terapêutica do medicamento.¹ As ciclodextrinas (CDs) formam compostos de inclusão (CIs) com diversos fármacos, sendo as CDs consideradas excipiente e classificadas como estabilizante e solubilizante.2 Assim, o estudo termodinâmico da inclusão de excipientes em CDs é de suma importância para garantir a eficácia e segurança do medicamento. A calorimetria de titulação isotérmica (ITC) fornece a caracterização físico-química da interação entre moléculas, como as CDs e o dodecil sulfato de sódio (SDS, Fig. 1). Além de possibilitar o estudo da competição entre esse possível CI e o fármaco presente no medicamento. Logo, o CI entre SDS e a β ciclodextrina (βCD) foi realizada por ITC em diferentes temperaturas e por espectroscopia de infravermelho por reflectância atenuada (FTIR-ATR). Os experimentos de ITC foram realizados em duplicata com βCD 10 mM e SDS 0,5 mM.

Figura 1. Estrutura do dodecil sulfato de sódio.


Resultados e Discussão

Conforme a Tabela 1 nota-se que o aumento da temperatura ocasiona uma diminuição da estequiometria (n) e da constante de associação (K), bem como um aumento da contribuição entalpica (Δ H) e diminuição da entrópica ($T\Delta$ S). A análise do espectro de FTIR-ATR (Fig. 2) do CI na razão 1:1 SDS: β CD da indícios de uma possível inclusão do SDS em β CD. Devido a diminuição da intensidade das bandas referentes estiramento (ν) de O-H (~3500cm⁻¹) e deslocamento das referentes ao ν C-O-C de 1150-1020 cm⁻¹ para 1153-1026 cm⁻¹ da β CD no CI, bem como a diminuição da intensidade das bandas relativas ao ν C-H (~2910 –

2840 cm⁻¹) e de S=O (~1214 cm⁻¹) do SDS no CI e o desaparecimento da banda de v S-O-C (~1080 cm⁻¹) do SDS no composto. Analisando todos os dados pode-se sugerir que a 25°C mais de um tipo de CI possa ser formado conforme o valor de n e modificações no FTIR-ATR, com a interação do grupo alquil e/ou do grupo sulfato na cavidade da β CD. Sugere-se que o aumento da temperatura favoreça a formação de um tipo de CI mais estável e mais exotérmico (Δ H mais negativa).

Tabela 1. Parâmetros termodinâmicos da interação entre SDS e β CD em diferentes temperaturas

Т	n	TΔS	ΔΗ	ΔG	K (M ⁻¹)
(°C)		(kJ/mol)	(kJ/mol)	(kJ/mol)	
25	1,70 ±	17,34 ±	-7,64 ±	-24,99 ±	23950 ±
	0,007	0	0,04	0,02	212,13
37	0,97 ±	9,38±	-14,87 ±	-24,25 ±	12150 ±
	0	0,23	0,19	0,05	212,13
45	0,74 ±	6,16 ±	-18,54 ±	-24,72 ±	11450 ±
	0,01	0,22	0,14	0,08	353,55

Figura 2. FTIR-ATR da β CD, do SDS e do composto SDS: β CD (1:1).

Conclusões

Observou-se a possível formação de CI SDS: β CD por FTIR-ATR. Experimentos de ITC a diferentes temperaturas forneceram os dados termodinâmicos, sugerindo mais de um tipo de sistema supramolecular.

Agradecimentos

Ao CNPq, à CAPES, FAPEMIG e a RQ-MG.

¹Instituto de Física e Química, Universidade Federal de Itajubá, Itajubá - MG, 37500-903.

¹Steinberg, M., et al. Regulatory toxicology and pharmacology, **1996**, 24, 149-154.

²Loftsson, T.; Brewster, M. E. *Journal of pharmaceutical sciences*, **2012**, 101, 3019-3032.